skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mondal, Souvik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shea, Joan-Emma (Ed.)
    We aim to automatize the identification of collective variables to simplify and speed up enhanced sampling simulations of conformational dynamics in biomolecules. We focus on anharmonic low-frequency vibrations that exhibit fluctuations on timescales faster than conformational transitions but describe a path of least resistance towards structural change. A key challenge is that harmonic approximations are ill-suited to characterize these vibrations, which are observed at far-infrared frequencies and are easily excited by thermal collisions at room temperature. Here, we approached this problem with a frequency-selective anharmonic (FRESEAN) mode analysis that does not rely on harmonic approximations and successfully isolates anharmonic low-frequency vibrations from short molecular dynamics simulation trajectories. We applied FRESEAN mode analysis to simulations of alanine dipeptide, a common test system for enhanced sampling simulation protocols, and compare the performance of isolated low-frequency vibrations to conventional user-defined collective variables (here backbone dihedral angles) in enhanced sampling simulations. The comparison shows that enhanced sampling along anharmonic low-frequency vibrations not only reproduces known conformational dynamics but can even further improve sampling of slow transitions compared to user-defined collective variables. Notably, free energy surfaces spanned by low-frequency anharmonic vibrational modes exhibit lower barriers associated with conformational transitions relative to representations in backbone dihedral space. We thus conclude that anharmonic low-frequency vibrations provide a promising path for highly effective and fully automated enhanced sampling simulations of conformational dynamics in biomolecules. 
    more » « less